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Abstract

Environmental data often have features that are distinct from data in other branches of science. These features include spa- |

tial and/or temporal auto-correlation, natural heterogeneity, measurement errors, small sample sizes, and simultaneous existence

of different types and qualities of data. Realistic environmental modeling requires simulation procedures that account for all of these
features. In this study, a model of uncertainty analysis, BUDA, is used to account for the noted features and provide a unified frame-
work for quantification, propagation, and reduction of uncertainty.
ride plume around an old landfill to the year 2020. This article describes the different components of BUDA as they relate to the |

landfill application.

Introduction

Environmental protection is becoming an increasingly impor-
tant social, political, and research issue. The past several decades
have seen much effort directed toward the development of analyt-
ical and technological tools dealing with anticipated environmen-
tal problems ranging from ground water pollution to ozone layer
depletion.

Environmental data have many characteristic features, includ-
ing the following:

1. Most environmental data exhibit spatial and/or temporal auto-
correlation. Ignoring this feature leads to inefficient use of the
available information (e.g., Abbaspour et al. 1996).

2. FEnvironmental data exhibit natural heterogeneity. Realistic
spatial simulation programs should maintain this heterogeneity.

3, Most input parameters in environmental studies, including
geostatistical parameters (i.e., mean, variance, range, nugget,
and shape of the auto-correlation structure), are highly uncer-
tain. Ignoring parameter uncertainty may lead to severe under-
designs in projects (e.g., Abbaspour et al. 1996).

4. Measured data usually contain non-negligible measurement
errors. Ignoring measurement errors can have far-reaching
consequences for data worth models and interpretation of
modeling results.

5. Environmental data sets are generally very small and do not
lend themselves easily to statistical analyses. This means stud-
ies must rely on subjective information.
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The BUDA model is used to analyze the development of a chlo- |

6. Collected data are mostly used as inputs in sophisticated sim- }
ulation programs where uncertainties and errors can further | -
propagate. Neglecting to propagate the errors and uncertainties |

may give a false picture of modeling results.

7. Different types of data are often available. Special procedures }

are needed that can combine and use all available data.

The objective of this work is to demonstrate the use of a new _
methodology for dealing with environmental projects. The BUDA =

(Bayesian Uncertainty Development Algorithm) uncertainty analy- | -

sis model is presented and applied to an example landfill problem.
The important features of BUDA are: the special characteristics of
environmental data are accounted for, and a number of different pro-
cedures dealing with quantification, propagation, and reduction
of uncertainty are linked together and unified under one algorithm.

The landfill under consideration is located near Aaura in
Switzerland and has been used as a toxic waste repository, Measures
such as covering the surface with grass and installing drainage
and pumps to remove and remediate the discharge have been taken
to stop the spread of contaminants. In performing the landfill

analysis, our goal was to establish whether these measures were :

enough to contain the landfill. To simulate the chloride plume, we
used random field techniques to generate conditional hydraulic
conductivity data, where the conditioning data included hard (mea-
sured) conductivity values as well as soft (estimated) conductivity
values. The soft data were obtained from a relationship between
hydraulic conductivity and borehole profile description. The invoked
geostatistical model for the hydraulic conductivity had uncertain
parameters which included the mean, sill, range, and nugget. Next,
we propagated the uncertainties in the parameters to a goal func-
tion using a two-dimensional transport model. An inverse procedure
was subsequently used to decrease the uncertainty in the initial esti-
mates of the parameters, followed by a data worth analysis to
show the effect of additional measurements of hydraulic conduc-
tivity on the confidence of the model prediction. In the inverse analy-
sis, the initial estimates of the input parameters were conditioned
on 70 measured chloride concentrations. The reduction in uncertainy
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of the input parameters obtained by inverse conditioning, which
included the hydraulic conductivity parameters as well as the sys-
tem porosity and dispersivity, was compared with the results of a
data worth analysis which considered taking up to 50 more hydraulic
conductivity measurements. Finally, we applied our model to pre-
dict the spatial distribution of the chloride around the landfill in the
year 2020. This information was used to judge the efficiency and
| safety of the current measures implemented to stop the spread of
- contaminants from the immediate vicinity of the landfill boundaries.

-~ Literature Review

In recent years, tremendous advances have been made in mod-
' eling and analyzing environmental projects. Here we discuss some
of these advances as they relate to the fields of soil and water pro-
tection.

Modeling of Water and Contaminant Movement in Soil and
Ground Water

In the past, flow and transport models were scarce and model
- users often had to develop their own models. This lack severely lim-
. ited the use of modeling for practical applications. In recent years
there has been a surge of user-friendly, general and specific purpose
models. User-friendly programs equipped with automated mesh gen-
erators and graphical interfaces have made modeling a viable tool
. for practical applications in academia, engineering, and govern-
- mental research agencies (for a list and a summary of some of these
- programs see Abbaspour and Schulin [1996]).

- Employment of Stochastic Simulations

i Stochastic simulation is in recognition of parameter uncertainty
} inherently associated with environmental studies. Propagating
' input uncertainty gives rise to stochastic simulations, where, in
- Monte Carlo type simulations, instead of producing one scenario
- based on an unlikely set of average input values, one produces many
scenarios to represent reality. Advances in random field analysis have
provided more options to depict the environment in more realistic
ways.

Advances in Geostatistical Estimation and Simulation Techniques

While geostatistical techniques are powerful estimation tools,
their use in environmental studies have been limited due to large
variability and small size of data sets. Recent development of tech-
' niques that make geostatistics more relevant to practical environ-
mental applications include the introduction of co-kriging techniques
(Myers 1982; Journel and Huijbergts 1978) that allow linear regres-
- sion using data defined on different attributes; indicator kriging
(Journe] 1983), which allows reproduction of patterns of spatial con-
nectivity by a least-square estimate of the conditional cumulative
distribution function (ccdf) for a set of cutoff points; indicator
principle component kriging (Suro-Perez and Journel 1991), which
evaluates the ccdf of several categorical variables; and the Markov-
Bayes model of soft kriging (Journel 1986; Zhu and Journel 1993)
which uses soft or fuzzy data and generates posterior conditional
distributions.

In addition to these estimation methods, a number of simula-
tion techniques have also been developed. Stochastic simulation, in

| ageostatistical context, is defined as the process of building alter-

native, equally probable, high-resolution models of the spatial dis-
tribution for a random variable (Deutsch and Journel 1992),
Simulation techniques, as opposed to estimation techniques, are bet-
ter suited for environmental projects and risk assessment studies.

These techniques are intended to produce a better picture of real-
ity, and to eliminate unrealistic smoothing that is characteristic of
spatial averaging methods.

Employment of Conditional Simulation Procedures

Conditional simulation techniques honor the measurement
points at their measurement locations. They bring geostatistical tech-
niques much closer to depicting the field data.

Use of Different Data Types (Qualities) in Simulations

It is typical for an engineering situation to have data of different
types, with each having a relatively small sample size. An impor-
tant achievement in geostatistical simulation programs is the abil-
ity to use data of different types and qualities. This allows use of all
types of information, thus in effect increasing the sample size.
Poeter and McKenna (1995) used soft geologic data and expert opin-
ion to reduce uncertainty associated with flow and transport pre-
dictions in ground water. Some geostatistical techniques can now
account for soft data types such as Markov-Bayes simulation tech-
nique (Alabert 1987; Zhu and Journel 1993), which uses soft or
fuzzy data and generates posterior conditional distributions of a pri-
mary variable, and Co_Est algorithm (Abbaspour et al. 1998),
which provides the possibility of using pedotransfer functions to
obtain better estimates of a primary variable. Pedotransfer functions
are regression equations or models which relate hard-to-measure
field properties to more basic and easily measured properties.

Adaptation of Inverse Simulation for Parameter Identification

Inverse modeling is a process for conditioning the input param-
eters on the observed primary outputs. The inverse approach rec-
ognizes that most practical applications do not have enough input
data to establish a credible modeling result. Reviews of this subject
are given by Yeh (1986) and Kool et al. (1987). The procedure gen-
erally involves minimization of a squared difference function of
some measured and simulated variable. A common problem with
inverse procedures involving a least square minimization scheme
is stability and convergence. Abbaspour et al. (1997a) introduced
a general algorithm for parameter estimation which appears to be
always stable and convergent.

Use of Bayesian Statistical Framework
Bayesian statistics have been shown to be particularly useful

in applications with geologic (Einstein and Baecher 1983), hydro-

logic (Wood and Rodrigues-Iturbe 1975; Vicens et al. 1975), or
hydrogeologic (Gates and Kisiel 1974; Grosser and Goodman

1985; Freeze et al. 1990) components. The main difference between

the classical and Bayesian statistical approach is the use of a prior

estimate of the form of the probability density function and its sta-

tistics. The prior estimate is largely subjective and could be based

on limited early data from the site or similar sites, or on the engi-

neer’s expert opinion. When additional data become available,

they are used to update the prior estimates of the statistics to pos-

terior estimates using Bayes theorem. Use of subjective informa-
tion based on experience is prevalent in engineering practices;
invoking a Bayesian approach hence could be advantageous to a
practicing engineer. The implication in adopting a Bayesian frame-
work for an engineering project is that the project iterates among
data analyses, field work, and decision making, while collection of
data is commonly based on the results of a data worth model in pre-
posterior analysis. Pre-posterior analysis is the exercise of sampling
from the prior distributions of input data rather than field sampling.
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Data worth analysis (Gates and Kisiel 1974; Ben-Zvi et al. 1988;
James and Freeze 1993; Abbaspour et al. 1996) is probably the most
important feature of a Bayesian framework. Collection of field
data is expensive and time consuming, and particularly in engi-
neering situations, assessment of the worth of data can be of para-
mount importance. By using a Bayesian framework, issues com-
monly sought by engineers can be addressed, such as the quantity
of risk based on current information, the number of additional
samples needed to decrease the risk to an acceptable level, the
type of data that should be collected, and where they should be taken.

An important criticism of the Bayesian statistics deals with the
use of subjective priors. This problem is alleviated in BUDA by the
initial conditioning of the prior estimates of parameter uncertain-
ties on a set of measured data such as concentration or hydraulic
head.

An Overview of BUDA

The main components of the BUDA uncertainty model are
schematically depicted in Figure 1. The statistical framework of
BUDA is Bayesian in nature, reflecting the fact that unknown
parameters are treated as random variables. The Bayesian frame-
work of BUDA allows a unified treatment of natural and informa-
tional uncertainties. A detailed explanation of BUDA is given else-
where (Abbaspour et al. 1996). The model has three main
components: problem definition, uncertainty analysis, and failure
and risk analysis. The objective of the problem definition phase is
to obtain knowledge of the physical system and the underlying flow
and transport processes, as well as to collect all existing informa-
tion. A conceptual model of the physical system is subsequently
developed to permit flow and transport simulations using a computer
code. This stage should permit one to express the objectives of the
project by means of a goal (objective) function. Identification of a
goal function is an important task as this function will be used to
define and determine in a quantitative fashion the best alternative
design, the worth of further sampling, and ultimately the failure or

L_{Problem T 1Description of Physical
Definition System
Description of Physical |
Processes Definition of a
| [Conceptualization of the | | |Goal Function
System
Identification of a
" |Simulation Function
Uncertainty
Analyses i
Random field analyses
Inverse analyses
Data worth analyses
Risk/Failure
" |Analyses

Figure 1. The main components of BUDA.
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Figure 2. A typical segment of a chart used for the profile description
of a borehole.

risk of a project. The next set of procedures in BUDA deals with the |

quantification, propagation, and reduction of uncertainties. A first
step in the uncertainty analysis involves probabilistic depiction of
all uncertain input data; this depiction is based on all available infor-
mation and experts’ opinion. After quantification, uncertainties in

the state parameters are propagated into the goal function by using |
a hydrologic simulation model. Finally, uncertainties in the state {

parameters, and subsequently in the goal function, are reduced by
employing random field analyses, inverse analyses, and data worth

analyses. Random field analyses are included as part of the uncer- |
tainty reduction since incorporation of soft data and generation of {

conditional hydraulic conductivity fields produce more accurate
hydraulic conductivity input data which subsequently lead to more
accurate output results.

The final component of BUDA deals with risk analysis. One
of the challenges of environmental projects is the assessment of risk
which is closely related to that of failure. Risk is project dependent
and must be defined separately for each project. Quantitatively, risk
is usually expressed as the product of the probability of failure and

the cost of failure. In BUDA, the probability of failure is derived |

from the marginal or Bayesian distribution of the goal function
which must also embody the definition of failure.

Application of BUDA to a Landfill Analysis

Problem Definition

The example selected for our analysis involves a landfill site
near Aarau, Switzerland. For the interest of brevity we keep the prob-
lem definition to a minimum in this paper. For more details, inter-
ested readers are referred to the Sondermiilldeponie Kolliken
Annual Reports (1991, 1992, 1993, 1994).

Landfill Site and Data

The landfill site was used as a toxic waste repository and lies
in a former clay pit excavated in an aquitanian fresh water molasse.
The molasse is composed primarily of marls and variegated clays
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Figure 3. The frequency distribution of the variable z = -log K based
on 42 measurements, and the semivariogram of z based on 298 data
points (42 measured and 256 estimated).

interlayered with sandstone banks (Martinson 1994). The site con-
tains approximately 60 boreholes which were drilled between 1970
and 1990 in a 800 m by 600 m area. Most of the boreholes were
drilled to a depth of 30 m. Detailed lithologic descriptions were made
for all boreholes, an example of which is shown in Figure 2.
Hydraulic conductivities were measured at several different depths
in 17 boreholes, giving a total of 42 hard data points. The mea-
surements were made over average vertical distances of 3 m using
a double packer technique. The average measurement error for
this technique in a molasse geology is about one order of magni-
tude (Peck et al. 1988; and local expert estimates). A frequency dis-
tribution of the measured conductivity data is shown in Figure 3.
Figure 4 shows additional details of the landfill area. Hydraulic head
and concentration of chloride were measured several times between
May 1986 and May 1994 in several boreholes. The location of some
of the boreholes are shown in Figure 4 as KBs. The landfill itself
consisted of eight compartments (C1 to C8). Chloride concentra-
tions were measured regularly in each compartment from May
1986 to May 1994 in wells located at the south corner of each com-
partment. The sources of chloride are mostly salts dissolving from
decomposing cinder and construction materials. Figure 5 shows the
chloride concentrations measured in compartments C4, C6, and C7.

General direclion of flow

600

500

200 300 400 500 600
X (m)

Figure 4. Some pertinent information concerning the modeling domain
showing the landfill boundary, the isolines of the hydraulic head used
as initial condition, the eight different landfill compartments, locations
of the 10 pumps, locations of the seven boreholes (KB23, KB32, KB34,
KB36, KB37, KB39, and KB41) where observed chloride concentra-
tions were used for conditioning the parameters, and locations of the
seven boreholes (KB3, KB4, KB20, KB21, KB27, KB38, and KB46)
where chloride concentrations were used for model validation.
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Figure 5. Concentration of chloride inputs into the system from three

landfill compartments as a function of time.

Modeling of Chloride Transport

The landfill site was analyzed using a two-dimensional hori-
zontal flow and transport model, SWMS_2D (Simunek et al. 1994).
Analyses of hydraulic head measurements and water fluxes at the
northern landfill boundary indicated that there were only small
temporal fluctuations in the system, and that the response to rain-
fall events were minimal. Initial hydraulic heads and chloride con-
centrations were estimated by kriging using measured values from
70 boreholes in April 1986. The hydraulic head isolines are shown
in Figure 4. All four boundaries of the system were assumed to be
constant head boundaries. There were 10 pumping stations (PO to
P9) at the southern boundary of the landfill. We assumed pumping
had occurred at constant rates and obtained average values for
each pump from available records. Chloride concentrations were
simulated and values were recorded at seven observation points
(KB23, KB32, KB34, KB36, KB37, KB39, and KB41 in Figure 4)
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for which we had simultaneous observations at 10 different times
for a total of 70 observed data points. The 70 observations were used
as conditioning data in an inverse procedure, with the goal function
being formulated as:

1 i=70

U el - 2
8= 752 (G~ G M

where C, is simulated chloride concentration, and C_ the measured
chloride concentration. We emphasize that a project may have
more than one goal function depending on the type of analysis being
performed. The choice of the goal function in Equation 1 was
based on the objectives of the inverse analysis. For failure and risk
analysis, the difference between actual and risk-based critical con-
centration at a monitoring point would probably be more suitable.

Uncertainty Analysis

Quantification of Uncertainty in Input Parameters

We decided to treat hydraulic conductivity, porosity, and lon-
gitudinal dispersivity as random variables. Along with the bound-
ary conditions, these parameters were thought to have the most
important effects on the nonreactive transport modeling results.
Based on preliminary analyses, we were relatively confident about
the accuracy of the imposed constant head boundary conditions, but
quite uncertain about the values of hydraulic conductivity, poros-
ity, and dispersivity. The hydraulic conductivity was treated as a spa-
tially random variable requiring four parameters for its character-
ization: mean, sill, range, and nugget. Based on our preliminary
analysis, the shape of the semivariogram for the hydraulic con-
ductivity was assumed to be spherical. Due to the lack of more
detailed information, and on the basis of the local expert opinion,
we assumed porosity and dispersivity to have univariate uniform dis-
tributions within [0.10, 0.30] and [10, 30] m, respectively. Transverse
dispersivity was assumed to be two tenths of the longitudinal dis-
persivity.

To improve the hydraulic conductivity data set, we developed
a pedotransfer function relating measured hydraulic conductivities
to borehole profile descriptions. Descriptive qualifiers representing
borehole profiles, such as the example in Figure 2, were transformed
into dummy variables (see Abbaspour and Moon [1992] for more
details) and correlated with measured conductivities in a back-
wards stepwise multiple regression analysis (Zar 1984). Pedotransfer
functions (PTFs) are regression equations or models which relate
hard-to-measure field properties to more basic, and generally more
easily measured, properties. Literature abounds with such equations
that have been derived for different properties (e.g., Batjes 1996;
Salchow et al. 1996; Wosten et al. 1995; Abbaspour and Moon
1992). The local pedotransfer function obtained in this study to esti-
mate saturated hydraulic conductivity (K) was expressed as:

—log K=6.59+1.48 FS—1.30 MS +1.35 SN—1.36 CC
—-143CR1+1.16 CY1—0.79 CR2 @)

in which the variables are defined as:

FS = 1 if texture is fine sandstone, = 0 otherwise

MS 1 if texture is medium sandstone, = O otherwise

SN 1 if texture is siltstone, = 0 otherwise

CC = 1 if sandstone contains carbonate, = — 1 if it does not,
= () if texture is not sandstone

i

il
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CR1 = 1 if fine sandstone is crumbly, = 0 otherwise
CY1 = 1 if fine sandstone is clayey, = 0 otherwise
CR2 = 1 if medium sandstone is crumbly, = 0 otherwise

Equation 2 yielded a model correlation coefficient of .82, a stan- |
dard error of estimation of 0.82, and a cross validation correlation |
coefficient of 0.73. This equation was then used to estimate 256 val- |
ues of soft hydraulic conductivity data. ;

Using the program Co_Est (Abbaspour et al. 1998), we gen- {
erated hydraulic conductivity random fields. The advantage of |
Co_Est over co-kriging is that Co_Est (1) combines measured and |
estimated hydraulic conductivity data to form a larger data set
and, hence, requires only one semivariogram; (2) accounts for
both measurement and estimation errors in the input data; and (3}
can directly use one or several pedotransfer functions to obtain esti- |
mates of the primary variable. In our example, using a set of 298 |
values of hydraulic conductivities (42 measured plus 256 esti- |
mated), we calculated the experimental semivariogram shown in
Figure 3. The mean, sill, nugget, and range of the semivariogram |
were in turn treated as random variables. The uncertainty in these |
parameters arises from measurement and estimation errors, as well
as from having a limited number of data points. Based on our pre-
liminary analyses, a hydraulic conductivity probabilistic model
was chosen. The mean and sill of the logarithm of hydraulic con-
ductivity were considered to have a joint normal gamma distribu-
tion represented by three parameters: the mean, the sill, and an equiv-
alent prior sample size (Benjamin and Cornell 1970). The marginal
distribution of the sill is proportional to Chi-squared, while the con-
ditional distribution of the mean given the sill is normally distrib- |
uted. It is often possible to find for a particular problem a normal ‘
gamma distribution which closely approximates an experimenter’s
estimated actual prior distribution of the mean and sill (DeGrool
1975). The probability model for the shape of the semivariogram,
the nugget, and the range cannot, in most practical situations, be fully
inferred from the available data, and hence may ultimately have to
rely heavily on the judgment and experience of a geologist or
engineer. In our example, we assumed that the spatial parameters
were independent of the mean and sill, that the nugget was uniformly
distributed within [0.6, 1.1], and that the range was also uniformly
distributed within [0, 500}. Note that this model was chosen on the
basis of our preliminary analyses and could be replaced by any other
probabilistic model.

In this analysis, the flow/transport model consists of six ran-
dom variables: mean, sill, nugget, and range of the logarithm of
hydraulic conductivity, as well as system porosity and dispersivity.
It should be noted that the hydraulic conductivity random fields
directly honor the 42 measured data and, indirectly through the soft
data, the system geology at 256 locations. We also emphasize that
one only needs to assign some reasonable values to the parameters
for expressing the prior uncertainties of the input state parameters.
In the next step, as the inverse analysis is invoked, the uncertain-
ties will be conditioned on the observed values and hence adjusted
to a more reasonable range as dictated by the goal function.

Propagation of Uncertainty

To propagate the uncertainties in the parameters of our trans-
port model, we used the BUSIM program of Abbaspour (1997b). |
The use of this program is schematically depicted in Figure 6
Each parameter was divided into a number of strata. For the sill and
mean, which were characterized by distributions, the cumulative
scale ranges (0 to 1) were divided into a number of strata, and the
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| Figure 6. A schematic representative of uncertainty propagation in a
stratified sampling setup. The values of the goal functions obtained are
| used to build a cumulative frequency distribution of the goal.

8 £15625

first moment of each stratum was taken to represent that stratum.
Then, depending upon the speed of the simulation program, we fol-
lowed one of two different sampling strategies: exhaustive strati-
fied sampling, or random stratified sampling. In the exhaustive sam-
pling approach, the goal function is calculated for all possible
combinations of the parameter strata. This means that for our six
| parameters, each divided into five strata, the transport simulation
program must be run 56 = 15,625 times and the goal function cal-
culated for each run. The resulting frequency distribution of the goal
immediately yields the marginal Bayesian distribution of the goal
| function for use in a model of risk analysis. If the transport simu-
| lation program takes too long to run, then an alternative random sam-
| pling can be invoked where only a random subsample of the
exhaustive case is used to run the simulation program. The marginal
Bayesian distribution of the goal function is then calculated using
the random subsample. For the example in this study, we used a ran-
dom stratified sampling technique which simulated about 10% of
the exhaustive 15,625 runs.
The Bayesian distribution is expressed as:

£ (x) = f £(x[b) £5(b)db 3

where bold characters are vectors, X is a random variable express-
ing the model output such as the goal function o, in our case, also
the chloride concentration, and b is the vector of random input
parameters. The distribution given by Equation 3 can be inter-
preted as a weighted average of all possible distributions which are
associated with different values of the input parameters (Benjamin
and Cornell 1970). Also, the Bayesian distribution f,(x) is a mar-
ginal distribution in the sense that £, (x) does not depend on the
unknown parameters which, through the integrals, have been
removed from the equation. We also note that as the distribution of
input parameters, b, becomes more and more concentrated about the
true values of the parameters, the Bayesian distribution will approach
the true distribution of X. A higher precision in the distribution of
input parameters can be obtained by random field analyses, inverse
analyses, and collection of more data. One should generally expect
the Bayesian distribution to have a larger variance than the true dis-
tribution, as the former incorporates both inherent and statistical
uncertainty (Benjamin and Cornell 1970).
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Figure 7. Frequency distribution of the scores in each stratum. Th.e
strata with the largest scores are most likely to contain the desired esti-
mates.

Reduction of Uncertainty

Inverse Analysis

To reduce our prior estimates of the parameter uncertainties,
and subsequently the variance of the Bayesian distribution of the
goal function, using an inverse procedure, we invoked the SUFI pro-
gram of Abbaspour et al. (1997a). In SUFI, the runs already per-
formed in the propagation step are used to score the strata combi-
nations of the parameters. Initially, all strata in Figure 6 are assigned
a score of zero. Then, for every combination of the parameter
strata for which the value of the goal function is less than a critical
value, each stratum receives a score of one. Performing this step for
each run leads to a score distribution for the parameter strata as
shown in Figure 7. The high score areas are more likely to contain
the minimum value of the goal function. Therefore, the strata at each
end of the parameters that receive no or relatively small scares are
eliminated, thereby reducing the uncertainty domain of each input
parameter. If the initial estimate of the uncertainty for a parameter
was set too small and the desired parameter value was located to the
right of the interval, then the right-most stratum would typically
receive a high score with most or all other strata scoring zeros. In
this case, one would update the parameter by extending the inter-
val to the right. A few iterations are generally required before
reaching a final minimum. We emphasize that this procedure can
be used to obtain different degrees of conditioning. A “strongly con-
ditioned,” or “fitted,” parameter set is obtained by reaching the
absolute minimum of the goal function, whereas a “mildly condi-
tioned”” parameter set results when the absolute minimum of the goal
function is not yet reached. The absolute minimum of the goal is
reached when successive iterations result in the same value. As will
be shown later, a mildly conditioned parameter set generally gives
better results for prediction at other points.

The effect of the parameter uncertainty propagation on the sim-
ulated chloride concentrations, and the subsequent reduction using
inverse procedures, are illustrated in Figure 8. This graph shows the
95% confidence intervals of the Bayesian distribution of the sim-
ulated values based on the prior parameter estimates and after
conditioning, the expected value of the simulated concentrations after
conditioning, and the observed concentrations at a particular loca-
tion and time. The prior average expected value of the goal func-
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tion, E(g), was in excess of 2400 mg 1-! with a variance in excess
of 1,500,000, whereas after conditioning E(g) reduced to about 250
mg 1-! with a variance of about 150,000.

Data Worth Model
To compare uncertainty reduction in the goal function using
inverse analysis versus uncertainty reduction based on taking more
hydraulic conductivity samples, we invoked the data worth model
routine in BUDA. In this routine, an expected conditional hydraulic
conductivity field is estimated by propagating the uncertainties in
the four hydraulic conductivity parameters through a set of linear
measurement equations (Bryson and Ho 1975; Abbaspour et al.
1998), and calculating the mean of the Bayesian distribution of the
hydraulic conductivity at each node of the finite-element mesh
representing the region of study. Then a desired sample, in terms of
the number of sampling points and/or locations, is taken from the
expected hydraulic conductivity field. Here we should make a dis-
tinction between decision analysis framework and optimization
framework (Freeze et al. 1990) with respect to the choice of a
sampling strategy. Optimization involves the determination of the
best sampling strategy with respect to a given goal function.
Decision analysis involves selection of the best sampling strategy
from a limited number of given strategies. Within the framework
of BUDA, optimization would be difficult to achieve, mainly due
to the large number of data points-sampling location possibili-
ties. Decision analysis, however, is easily implemented. We selected
11 different sampling strategies consisting of different numbers of
hydraulic conductivity samples, i.e., 2,4,8,12, 16, 20, 24, 28, 36,
40, and 50. For each sampling strategy we calculated average E(g)
values, with the results illustrated in Figure 9. This figure shows that
E(g) decreases as the number of samples increases. For 50 hydraulic
conductivity samples, E(g) decreases to about 430 mg I (variance
=500,000) from an initial value of about 2400 mg I"! (variance =
1,500,000). The expected goal obtained by the inverse analysis (i..,
250 mg I [variance = 150,000]) is still substantially smaller than
430 mg 1-! obtained by sampling 50 hydraulic conductivities.
Hence, the inverse analysis using 70 conditioning chloride con-
centration data was worth more than 50 additional hydraulic con-
ductivity samples in terms of reducing the uncertainty in E(g).
One reason for the effectiveness of the inverse procedure is that usu-
ally the uncertainty in all state parameters are modified instead of
only one parameter, as in the case for the addition of more data.

In fairness to the data worth analysis, however, one is not
likely to collect 50 hydraulic conductivity samples to reduce uncer-
tainty in the goal functions. The expected values in Figure 9 of the
goal function, E(g), and the value of sample information, EVSI,
which is the mirror image of the E(g), show that the value of addi-
tional samples lessens increasingly. Differentiating the EVSI curve
with respect to the number of samples yields a utility curve. The
maximum point of the utility curve reveals the best sampling strat-
egy. Because of a large initial goal value and large errors in the
hydraulic conductivity samples, we are advised to use only four sam-
ples during the initial round of sampling in this example. After tak-
ing the four samples in the field, we should update the parameters
and repeat the analysis again.

Figure 8 shows that, although the expected value of the goal
function after conditioning is relatively small (i.e., 250 mg 1-1), the
confidence intervals around the simulated concentrations are still
very large. Inverse modeling is a procedure of conditioning input
parameters on the basis of observed concentrations; hence, the
small values of the expected goal function are to be expected.
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Figure 8. Chloride concentration of the seven boreholes used in
inverse analysis as a function of time. The plus signs are the observed |

values, the outer dashed lines are the 95% confidence interval of the
Bayesian distribution for simulated concentrations with the prior
parameter uncertainties, the inner symbolized solid lines are same as
the latter but with parameter domains mildly conditioned to chloride
observations, and the inner symbolized dashed line is the expected value
of the simulated concentrations based on the conditioned parameter
domains.

However, reduction in the goal function may not also result in

locations for which we have not conditioned, or have no observa- |
tions. The goodness of the prediction at those points is reflected by |

the variance (about 150,000) of the goal function after the inverse
analysis. To reduce this variance, we invoked the data worth analy-
sis again, using this time the conditioned parameters obtained by
inverse analysis, and produced curves similar to those in Figure 9.
The results again suggested taking four additional hydraulic con-
ductivity samples which would improve the variance of the goal to
about 120,000. Hence, in BUDA, we used inverse procedure to
decrease uncertainty in the prior estimates of the state parameters,
followed by a data worth analysis to improve the confidence in the
predictions. Depending on the outcome of a risk analysis model, tak-
ing the suggested four hydraulic conductivity samples may not be
justified within the current example, given the small improvement
to be expected.

Validation Analysis
In light of the preceding discussion, and as a validation run, we
used the parameter set obtained by the inverse analysis and simu-
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Figure 10. Chloride concentration of the seven horeholes used in
model validation as a function of time. The simulations are based on
the conditioned parameters. The plus signs are the observed values, the
solid lines are the 95% confidence interval of the Bayesian distribution
for simulated concentrations, and the symbolized dashed line is the
expected value of the simulated concentrations.

lated chloride concentrations at boreholes KB3, KB4, KB20, KB21,
KB27, KB38, and KB46 (Figure 4). Note that these observation sta-
tions were not used in the inverse analysis. Observations were
available for each borehole at nine different times during May
1986 to November 1991. We considered a validation run to be suc-
cessful if the observed concentrations fell within the simulated
95% confidence interval of the Bayesian distribution. Unsuccessful
validation could arise for different reasons, such as incorrect para-
meterization of the system, underestimation of initial parameter
uncertainties, too strongly conditioning parameters on the set of con-
ditioning data, and nonideal system behavior such as preferential
flow not considered in the governing flow or transport equations.
The first three cases could be remedied by considering different
parameterizations; for example, by treating the boundary conditions
also as random variables, by increasing the initial parameter uncer-
tainty, or by invoking a milder conditioning of the parameters,
respectively. The case of nonuniform system behavior, however, is
more difficult to remedy since this problem requires hydrologic sim-
ulation programs capable of simulating nonuniform flow phe-
nomena. Few if any programs of this type may be really applica-
ble to such problems.

The results of the validation run are illustrated in Figure 10 for
a set of mildly conditioned parameters. The observations in loca-
tions KB3, KB21, KB27, KB38, and KB46 were roughly within the
acceptable ranges, whereas KB20 was severely overestimated,
and KB4 underestimated by the model. The very high and the
very low concentrations observed at KB20 and KB4 suggest the
presence of preferential flow in the system. Large increases in the
parameter uncertainties could not capture the high concentrations
observed at KB4, or the low concentrations at KB20. This situation
shows the difficulty inherent in validating continuum models for sys-
tems that behave in a nonuniform manner. It should be noted that
for a set of strongly conditioned parameters (results not shown fur-
ther), the chloride concentrations observed at most of the other val-
idation boreholes would also fall outside of the 95% confidence
interval. The degree of conditioning, therefore, may be chosen on
the basis of the performance of the validation analysis.

Prediction

Using the parameter set obtained by inverse analysis, we pre-
dicted the chloride distribution for the year 2020. The expected chlo-
ride distribution and associated standard deviation are shown in
Figures 11 and 12, respectively. The calculations required esti-
mates of the amounts of chloride released from the different land-
fill compartments. Figure 5 shows three typical behaviors from May
1986 to October 1994. Inputs from compartments 6 and 7 show a
general downward trend, while the input from compartment 4
somewhat increases, at least until t = 50 months. We acknowledge
that future chloride inputs into the system (to the year 2020) will be
difficult to quantify. The release of leachate from a landfill, in any
real situation, is probably one of the most difficult and uncertain vari-
ables to quantify. In our example we assumed that the chloride input
from each compartment followed an exponentially decaying func-
tion, plus a random fluctuation. The random fluctuation was further
assumed to have a normal distribution with a mean of zero and a
known variance. The variance was calculated by removing the
trends and obtaining the average of the running variances from May
1986 to October 1994.

We emphasize that the Bayesian distributions of the chloride
concentration at a given point were not normal but exhibited a long
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Figure 14. Sensitivity of the expected goal to the six state param-

eters. The graphs are based on the conditioned parameters.

upper tail. To demonstrate this feature, we plotted the chloride §
distribution associated with the upper 95% confidence intervalin {
Figure 13. Figure 11 shows that the expected chloride plume will |
stay in the landfill vicinity until the year 2020. The distribution of |

the standard deviation of the chloride concentration in Figure 12,
while suggesting the formation of a plume in the general direction
of ground water flow, further confirms that the plume will stay within

or in the immediate vicinity of the landfill. The distribution of the f

chloride concentration at the 5% significant level in Figure 13, how-
ever, revealed the formation of a distinct plume in the direction of
flow, with a large amount of chloride moving far away from the

landfill. This observation underlines the importance of obtaininga }
Bayesian distribution of the output, rather than only the first two |

moments. Based on the proposed uncertainty analysis, therefore, we

would conclude that the present measures taken to contain the |

landfill are inadequate.

Sensitivity Analysis

Finally, we show the sensitivity of the goal function to the six

parameters in Figure 14. In this analysis we kept the value of the
parameter under consideration constant, while propagating the
uncertainty of the other parameters as before and then calculating

the expected value of the goal function, These steps were repeated |
for several values of the parameter under consideration. The results §
in Figure 14 were obtained with the mildly conditioned parameters. }

The plots in Figure 14 clearly show that the sill and the mean of the

hydraulic conductivity probability model are the most sensitive }

parameters to the goal, and the dispersivity and porosity are the leas!
sensitive.
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 Summary and Conclusions

In this paper we demonstrate the applicability of the BUDA
uncertainty assessment program to analysis of a landfill problem.
After selecting the state parameters, we quantified their uncer-
tainty based on the available knowledge, propagated the uncertainties
through a transport simulation program to a goal function, decreased
the initial estimates of the uncertainty in the state parameters and,
subsequently, in the goal function by means of an inverse procedure,
and finally increased the prediction accuracy by taking four more
hydraulic conductivity data as suggested by a data worth analysis.
The procedures employed in BUDA are suitable for analyses of envi-
ronmental projects as they take into account the natural uncer-
tainty of most or all environmental data. Our analyses indicate
that propagation of input uncertainty can lead to a large estimation
variance. We also noticed that model validation can be difficult in
the presence of nonuniform system behavior such as preferential
flow. Furthermore, the importance of obtaining the entire Bayesian
distribution of the output was demonstrated by plotting the chloride
distribution at the 5% significance level. We conclude by stating that
the procedures in BUDA, while respecting the special features of
information available in environmental studies, provide a rational
and unified framework for analyses of system uncertainty and
risk,
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